54" HOLLOW ROUND PILES

Low prestress level

21 strands - $f_{pc} = 724$

$f_c = 6$ ksi
687 ton axial load

$f_c = 7$ ksi
814 ton axial load

$f_c = 8$ ksi
941 ton axial load

High prestress level

38 strands - $f_{pc} = 1242$

$f_c = 6$ ksi
633 ton axial load

$f_c = 7$ ksi
760 ton axial load

$f_c = 8$ ksi
887 ton axial load
54" HOLLOW ROUND PILE
21 strands, $f'_c = 6$ ksi

SECTION PROPERTIES

$I = 233409$ in4
$r = 17.4$ in
$A = 770$ in2
w = 845 plf
Perimeter = 169.6 in

l/r = effective unsupported length of the pile / radius of gyration

AXIAL LOAD P_n (kip)

BENDING MOMENT ϕM_n (ft.k.)

54' 4 4" Hollow Pile
21 strands
fc = 6 ksi
54" HOLLOW ROUND PILE
21 strands, $f'_c = 7$ ksi

SECTION PROPERTIES
$I = 233409$ in4
$r = 17.4$ in
$A = 770$ in2
$w = 845$ plf
Perimeter = 169.6 in

$\frac{l}{r}$ = effective unsupported length of the pile / radius of gyration

54' 4" Hollow Pile
21 strands
$fc = 7$ ksi

AXIAL LOAD ϕP_n (kips)

BENDING MOMENT ϕMn (ft.k.)
54" HOLLOW ROUND PILE
21 strands, $f'_c = 8$ ksi

SECTION PROPERTIES
\[l = 233409 \text{ in}^4 \]
\[r = 17.4 \text{ in} \]
\[A = 770 \text{ in}^2 \]
\[w = 845 \text{ plf} \]
Perimeter = 169.6 in

\(l/r \) = effective unsupported length of the pile / radius of gyration

54' 4 4'' Hollow Pile
21 strands
\(f_c = 8 \) ksi
54" HOLLOW ROUND PILE
38 strands, $f'_c = 6$ ksi

SECTION PROPERTIES

\[l = 233409 \text{ in}^4 \]
\[r = 17.4 \text{ in} \]
\[A = 770 \text{ in}^2 \]
\[w = 845 \text{ plf} \]
\[\text{Perimeter} = 169.6 \text{ in} \]

\[l/r = \text{effective unsupported length of the pile} / \text{radius of gyration} \]

54' 4 4" Hollow Pile
38 strands
$fc = 6$ ksi

AXIAL LOAD vs. BENDING MOMENT graph

- ϕP_n (kips)
- ϕM_n (ft.k.)

Graph shows the relationship between axial load and bending moment for different values of l/r. The graph includes curves for various values of l/r.
54" HOLLOW ROUND PILE
38 strands, $f'_{c} = 7$ ksi

SECTION PROPERTIES

\[l = 233409 \text{ in}^4 \]
\[r = 17.4 \text{ in} \]
\[A = 770 \text{ in}^2 \]
\[w = 845 \text{ plf} \]

Perimeter = 169.6 in

\[l/r = \text{effective unsupported length of the pile / radius of gyration} \]

54' 4 4" Hollow Pile
38 strands
$fc = 7$ ksi

AXIAL LOAD $\phi P_n \text{ (kips)}$

BENDING MOMENT $\phi M_n \text{ (ft.k.)}$
54" HOLLOW ROUND PILE
38 strands, $f'_c = 8$ ksi

SECTION PROPERTIES
- $I = 233409$ in4
- $r = 17.4$ in
- $A = 770$ in2
- $w = 845$ psf
- Perimeter = 169.6 in

$1/r = \text{effective unsupported length of the pile} / \text{radius of gyration}$

54' 4" Hollow Pile
38 strands
$f_c = 8$ ksi

Graph showing the relationship between axial load and bending moment for a 54" hollow round pile with 38 strands.